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The odd-even hopscotch algorithm is considered for the solution of a heat equation 
with constant coefficients representing the heat flow in an isotropic thermal print head 
comprising a 5 x 5 matrix of elements. The results of experiments on the simulation of 
alphabetic character printing are reported. 

1. INTRODUCTION 

One of the recent advances in printing technology has been the development of 
the thermal printer. The printing is performed by the direct application of heat 
onto thermosensitive paper in which a chemical reaction takes place at temper- 
atures above a certain threshold. The heat is radiated from a thermal print head 
composed of a matrix of heat elements each of which consists of a heat 
resistor embedded in a thin film of a good conducting material surmounting a glass 
substrate. The thin film allows the rapid diffusion of heat over the printing surface 
when the heat resistor is switched on and when switched off the glass substrate acts 
as a heat sink. Thus by switching on and off specific elements a series of characters 
can be produced on the paper. 

This printing technique can be made faster than conventional mechanical 
devices $an optimal “time on/time off” cycle for the switching of the heat elements 
in the thermal print head can be found. In addition the physical properties of the 
materials used in the manufacture of the thermal print head need to be considered 
carefully as, for a given set of physical parameters, a given on-off switching of the 
heat sources can cause an overall rise in the print head temperature which in turn 
results in indistinct characters being produced on the print paper. 

A mathematical model for the thermal print head problem was first proposed by 
Chen [I]. Such was the complex nature of the model that a general analytical 
solution was impossible and thus a numerical solution was required. In the paper 
by Chen [I] the substrate problem was solved using an explicit finite difference 
method and the thin film problem using an implicit scheme. In a more recent 
paper [4], both Alternating Directional Implicit (A.D.I.) and Locally One 
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Dimensional (L.O.D.) methods were used. Experim.ents were carried out in “I] and 
[4] to test the accuracy of the numerical methods for the thermal print head 
problem with a known theoretical solution and also to investigate the action of the 
print head nnder more realistic physical conditions. However, the implicit schemes 
require large computer storage and hence restrict the size of problem under 
consideration to that of a single element in the print matrix and thus make the 
simulation of character printing impractical. 

In a more recent paper [5] the authors considered a class of hopscotch meti?ods 
(see Gourlay [2] and also Saul’yev [6]) for the solution of the heat flow in a single 
element of an isotropic print head and it was concluded that, aithough there was 
little difference in accuracy between the schemes, the odd-even hopscotch algorithm. 
had a computational superiority and required minimal computer storage. 

In this paper we shall report on the simulation of character printing, using ihe 
odd-even hopscotch scheme to solve the heat fiow problem in a thermai print head 
comprising a 5 x 5 matrix of elements. In Section 2 we shah briefly describe the 
mathematical model of Chen and the odd-even hopscotch method. The rest&s of 
the experiments, carried out on a 5 x 5 matrix of heat elements to illustrate the 
crucial effect of the choice of the physical parameters, are reported In Section 3. 
The paper is concluded in Section 4. 

The mathematical model of the thermal print head described in [I] is unusual 
in two respects. First, the thin film is assumed so thin and to have appropriate 
couduct~vity properties so that no temperature gradient e?tists in the z-direction- 
This has the effect of producing a thin film which is assumed to have no dimension 
in the z=direction other than to give the thin film a thermal capacity due to its 
physical thickness D. Second, the solution of the heat flow problem in the thin film 
constitutes a boundary condition for the solution of the total print head. 

The region in which the solution is required is defined by 

i-t = R x [O < t < T], 

where R = ((x, J’, z): 0 < X, y < I, 0 < z < b) with 1 = iWt3 the overall length 
of the side of an M x III print head matrix with each element of side b. We denote 
the boundary of R by aB. 

The equation governing the temperature distribution u = U(X, y, z, r) in the glass 
substrate (0 < z < b) is 
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subject to the initial condition 

u(x, y, z, 0) = 0.0, 

and the boundary conditions 

u(x, y, b, t) = 0.0, 

au 
- = 0 on 8R,=o,l 
a71 

and 

(2) 

aR,=o,z , 

(3) 

(4) 

and the values u = u(x, y, 0, t), where u is the solution of the heat equation for the 
thin film 

at1 K a2u 
( 

ak -+- Z=pC ax2 ay ) 
+ &x-Y Y, t> 

PC 
- & (Zf - u,) 

subject to the initial/boundary conditions (2) and (4) evaluated at z = 0. q is the 
outward drawn normal to the edges of the thermal print head and the physical 
parameters K, p, C and K~ , p1 , C, denote the thermal conductivity, density, and 
specific heat of the thin film and substrate, respectively. 21, is the ambient temper- 
ature and 11, is the convective heat transfer coefficient between the thin film and air. 

The multiple switching of the heat sources in the M x A4 matrix of elements is 
defined by the term 

I an-2 
i cs(.x,y,t)=q l- 1 (-l>H(t-L”)( 

L !J=O !  

M-1 M-l 

x A;o u;. [H(x - Ab - 4 - H(x - (A + l)b + 41 

x [H(y - pb - a) - H(Y - (p + 1)b + 41 I 
\’ 

where H(e) is the Heaviside function defined by 

n is the number of on/off switchings and the t, are defined such that 
{t&d v = 0, 2, 4 )..., 2rz - 2} are the switch-off times and {t,,: v = 1, 3, 5,..., 2~1. - 3) 
are the switch-on times for the heat sources. The heat resistors, each outputting 
q watts per unit surface area, are defined by the squares {(x, y): hb + a < x < 
(A + 1)b - a, pb + a < y < (p + 1)b - a, 0 < A, ,u < M - l> where a is the 
distance between the edge of the print elements and the edge of the enclosed 
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resistor. For simplicity we shall assume the heat resistors cover the whole area of 
each print element, that is a = 0. 

To obtain a numerical solution to Eqs. (1) and (5) with their associated 
initial/boundary conditions we first superimpose a rectilinear grid on the region of 
computation R where the spacings in the space variables are taken equal, namely 
5, = 5 U = 5, = I?, and the mesh spacing in the time dimension 5, is denoted by 
T. The mesh ratio r = T//P is taken to be constant throughout. We denase by 
II& the v-alne of the unknown ZI at the point (i/z, jir, klz, 7~) = (x> 2:, 2, :j- 
i,j = 0, l,..., MN, 12 = 0, l,..., IV, m = 0, 1, 3, . . . . where MlsJil = 2 and A% = b. 

Writing Eq, (5) in the form 

621 
t 

= L,u + d(x, y: I), 

where L, = (u/pC)((i?/W) + (Z/iQG)) - (h,/DpC) . IS a linear elliptic differential 
operator and n’(x, y, t) = (6(x, ): r)/pC) + (h ,+JDpCj, the associated odd-even 
hopscotch method may be written as 

or 

where 

$Z= fl for i +.j + jr; even, 
l0 for i f j + ITT odd, 

where & is a “‘suitable” (see below) difference approximation to L, of Eq. (5). 
In a similar manner, writing Eq. (I) in the form 

au 
t 

= L,ll, 

where L, is the three-dimensional elliptic operator L, = (,~,/p~C~)((Fj?x?) + 

(a”/Qj2) + (P/&T”)), the three-dimensional odd-even hopscotch algorithm is given 
bY 
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or 

(11) 

where 

for i+j+k+tizeven, 
for i+j+k+modd, 

and again L,, is a “suitable” difference approximation to L, of Eq. (1). 
The two- and three-dimensional odd-even hopscotch algorithms proceed as 

described in [2]. Namely, for the alternate nodal points at which ~9;;~ = 1 the 
numerical solution at the advanced time step z$’ is calculated by means of the 
explicit schemes (6) and (9). The numerical solution at the remaining nodal points 
given by $, = 0 is now calculated by the implicit schemes (7) and (10). However, 
if the difference operators in Eqs. (7) and (10) are members of a class of E operators, 
as defined by Gourlay in Ref. [2], then it is found that the solutions at those points 
about u’G;l, which usually make the scheme implicit, have already been computed 
using Eqs. (6) and (9) so that the schemes (7) and (10) are now computationally 
explicit. 

If we define the finite difference operator Lh in Eq. (8) to be the E operator 
Lh = (K/~C)((S,~/~~) + (SU2/h2)) - (/z,/DpC) = L, + 0(1?) and similarly the oper- 
ator Lh, in the three-dimensional scheme (11) to be the E operator Lh = 
(K,/~~C,)((S,“//P) + (SyP/h2) + (Sz2/h2)) = L, + 0(/z”), where 6, , 6, , 6, are the 
usual central difference operators defined by 

then the computational algorithm for the numerical solution of the thermal print 
head may be seen more clearly if we write out explicitly equations (9) and (10). 

For Eq. (9) we have 

For Eq. (10) we have 

&,yl - z 
NC 19 2 [UC+I~~Z + Ui-ljk f Uij+lk + &J-U + Ilijk+l $- Uijk-1 - 6~ijJ”+’ 

= u?! L3k . (1O.a) 
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Now, Eq. (9.2) is applied for 211 those points for which i + j + ic + m is even. 
Hence for al! the points at t = (tn + 1)~ which have a sum of subscripts and 
superscript which is odd, the difference solution is known. 

Equation (l0.a) is then applied for i +j + il- + i?z odd. Thus the values in the 
square brackets of Eq. (1O.a) have a sum of subscripts and superscripts which is 
odd, i.e., these are the very point values first calculated by Eq. (!?.a). Hence the 
scheme is computationally explicit. 

We have described briefly this part of the computational method (the FLU details 
may be found in Ref. [2]) to stress the fact that the odd-even hopscotch algorithm 
ailows one to dispense with the inversion of large tridiagonal matrices which arise 
when, for example, numerical methods such as A.D.I. or L.O.D. schemes are 
employed. Thus the hopscotch method requires correspondingiy sma2 storage 
requirements for computation. 

For the E operators described above the hopscotch method is unconditionally 
stable and has a local accuracy of 0(/? + T). By virtue of the method, no inters- 
mediate boundary conditions are required, and consequently no boundary 
correction techniques, as described in Ref. [3], are required. 

Finally we apply the normal boundary conditions (4) by using the simple 
difference replacements 

and 

with similar expressions for (a~/+)[,=~ and (&j;l~)\,=~ 

3. THE 5 x 5 ELEMENI PRINT HEAD 

Several numerical experiments using the odd-even hopscotch algorithm were 
carried out on an isotropic print head comprising a 5 x 5 matrix of heat elements 
to simulate the printing of physical characters. As previoushi mentioned in 
Section 1, care must be taken in the choice of the physical parameters for the print 
head as, for a given on/off switching, there is a possibility of an overali temperature 
rise in the printing surface which would cause a smudging effect. To illustrate this, 
the heat elements were switched on and off in a pattern which produced the 
alphabetic letters H, I, Xin turn, using a print cycle of eight time steps-6 on, 2 off. 

For the parameter set, a = 0, b = 1, E = 5, k = l/6, T = 1.0: K: = .Q = 0.5, 
p = 24.42, c = 2.6, Kg = K4 = Kg = 0.05, p1 = 0.13, c; = 3.0095, q = ao.0: 
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FIG. 1. (a) Points on the surface of a thermal print head where the temperature exceeds the 
threshold at time I = 67 with appropriate elements to produce letter H being switched on for 
0 < t < 67. (b) Points on the surface of a thermal print head where the temperature exceeds the 
threshold at time t = 147 with appropriate elements to produce letters H and I being switched 
on for 0 < t < 67 and 8~ < t < 147, respectively. (c) Points on the surface of a thermal print 
head where the temperature exceeds the threshold at time f  = 22~ with appropriate elements to 
produce letters H, 1, X being switched on for 0 < t < 67, ST Q t < 147, 167 < I < 227, 
respectively. 

k, = 0.000679, U, = 0.0, D = 0.00011045, Figs. 1 show that temperature pattern 
on the printing surface at times 67, 147, 22 T, respectively, where the symbol x 
denotes the points where the temperature u exceeds the threshold temperature. 
With these parameters, at time t = 14~ the letters H and I coalesce and also at 
time 227 the letters H, I, X are seen to coalesce. 

Let (p, q), p, q = 1,2, 3,4, 5 denote the row and column position of a heat 
element in the print head. Figure 2 shows the temperature distribution at the 
points x = (p - $)b, y = (q - +))b on the surface of each heat element (p, q), 
p, q = 1,2,3 which, due to the symmetry of the characters H, I, X about the lines 
x = 2.5b and 3’ = 2.56, gives a complete picture of the temperature distribution 
at the central points of all the elements. 

The graph for the element (2, 1) which is switched on in the first print cycle for 
the letter H and off thereafter shows that there is a negligible heat loss after the 
switch off time indicating that the smudging was brought about by an impractical 
choice of physical constants. 

A “good” parameter set is a = 0, b = 1, I = 5,lz = l/6, r = 1.0, fcl = Kp = 1.0, 
p = 10.49, c = 0.0556, KS = KJ = Kg = 0.0028, p1 = 2.4, c, = 0.2, q = 10.0, 
h, = 0.000053, u, = 0.0, D = 0.000015 which with the same print cycle gives 
clearly defined characters Fig. 3. The points at which the temperature is greater 
than the threshold are denoted by X. 

The temperature distributions for the heat elements (p, q) p, q = 1, 2, 3 Fig. 4 
show that when a heat element is switched off the temperature rapidly falls beneath 
the threshold. 



HEAT DISTRIBUTION 

- 

FIG. 2. Graphs of the temperature distributions on the print surface at the central points of 
the heat elements (i,j), i, j = 1, 2, 3 for a print cycle of 8~ to pro We the c5zxGdxs Jf9 5 x with 
smudging. 

581/15/2-6 
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FIG. 3. (a) Points on the surface of a thermal print head where the temperature exceeds the 
threshold at time t = 67 with appropriate elements to produce letter H being switched on for 
0 < t < 67. (b) Points on the surface of a thermal print head where the temperature exceeds the 
threshold at time t = 147 with appropriate elements to produce letters H and I being switched 
on for 0 < t < 67 and ST < t < 147 respectively. (c) Points on the surface of a thermal prim 
head where the temperature exceeds the threshold at time t = 227 with appropriate elements to 
produce letters H, I, X being switched on for 0 Q t < 67, 8~ < t < 147, 167 < t < 227, res- 
pectively. 

4. CONCLUDING REMARKS 

The results of the previous section report only on two of a series of experiments 
carried out by the authors to observe the effect of the variation of the physical 
parameters on the simulation of character printing. These results show clearly that 
the correct choice of physical parameter values is crucial to ensure the production 
of distinct characters by the thermal printer. 

The computational experiments reported in Section 3 and in [4] were carried out 
at the University of Dundee on an Elliott 4130 computer with a 64K word store. 

In [4], the thermal print head problem was computed using A.D.L and L.O.D. 
methods. It is the conclusion of the present authors that the hopscotch method 
described here represents a considerable saving in programming effort. In addition 
the hopscotch method represents a considerable saving in computing, both in time 
and in computer storage. The exact ratios of computational efficiency of the 
respective methods is difficult to ascertain precisely. The programs were all written 
in ALGOL 60 so that considerable dynamic storage allocation is used and no 
actual storage usage is ever given by the operating system. However we found that 
with the remaining store from the 64.K word memory not taken up by the operating 
system. we were unable to compute any significantly larger model than the single 
(10 x 10 x 10) point element described in [4]. By the hopscotch method the 
5 x 5 element thermal print head was computed using 20K mesh points. This 
2O:l ratio in storage is not precise since by careful programming the storage 
utilization of the A.D.I. and L.O.D. methods could be reduced, somewhat, at 
a greatly increased cost in computation. An approximate comparison of the storage 
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FIG. 4. Graphs of the temperature distributions on the prinr surface at the csntrai points of the 
heat eiements (i,j) i,j = 1,2, 3 for a print cycle of 8 7 to produce the character *I; i- X. 
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allocations can be found as follows. The hopscotch method as given by Eqs. (9) 
and (10) requires only a single vector of length 1000 for the single heating element. 
Since there is no matrix solution this is essentially all of the storage. In addition, 
the code to calculate the solution is extremely short and the logic simple. In 
comparison the A.D.I. and L.0.D methods (in the notation of [4]) 
are splittings of the system of equations (I+ rU)(I + rV)(I + r W) v,,, = 
(I- rU)(I - r Y)(I - r Iv) v, + k, where k is a vector of the same dimension as v 
the solution, i.e., (1 x lOOO), and contains the contributions from boundaries. The 
matrix (I + sU), etc. are 1000 x 1000 matrices (for the 1000 point model). Clearly 
these are not stored. However each matrix has three nonzero bands which are 
stored in three (1 x 1000) vectors. In all we have 12 vectors of length 1000. Each 
element of a real vector constitutes two words of storage. When pointers are taken 
into account the actual storage per (1 x 1000) vector is in excess of 2K words. In 
fact for the L.O.D. this is increased to 13 by virtue of the transformation methods 
necessary to implement the L.O.D. method in a manner to ensure U(G) accuracy. 
In addition to these vectors additional vectors are needed in the calculation of the 
tridiagonal systems as described in Varga [7], although not being as large as the 
12 vectors, still contribute to the storage allocation. Since O(T~) accuracy is being 
sought it was necessary to implement a predictor corrector version of the impIciit 
methods used in the thin film-this contributed an extra vector of length 100. 
Hence, approximately, on storage of vectors alone 15 times as much storage was 
necessary for the splitting methods as was needed by the hopscotch scheme. The 
A.D.I., and particularly the L.O.D., codes were extremely long in comparison with 
the hopscotch code and required of the order of 10K words. When the operating 
system is added it is clear that the computer store is just about filled with the single 
element for L.O.D. and A.D.I. We admit that less storage and more repeated 
calculation would have allowed a bigger model but this increased computer cost 
was not warranted-the hopscotch algorithm seemed to be the correct approach. 

We would like to stress the fact that it would not be feasible to obtain the results 
of Section 3 by using either A.D.I. or L.O.D. methods as, for a realistic computer 
storage size, we would be restricted to too few points in the 5 x 5 matrix of elements 
to provide data of any practical value. 

We conclude therefore that the odd-even hopscotch algorithm is a method 
which is particularly useful for complicated physical problems in which the 
associated coefficients are isotropic. However we point out the possible dangers in 
using the method for anisotropic problems (see [5]). In such cases the line or A.D.I. 
variants of the hopscotch method would be advocated with their associated increase 
in accuracy, but with an increased storage requirement. These storage requirements, 
however, are still minimal in comparison with the needs of A.D.I. and L.O.D. 
methods and the hopscotch methods can hence still be used to solve the full matrix 
print head problem described here. 
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